
Scaling up Generic Optimization

Joachim Giesen Lars Kühne Sören Laue Jens Müller

Friedrich-Schiller-University Jena, Germany

SPP 1736 – ”Algorithms for Big Data”



Scaling up Generic Optimization

I Optimization is ubiquitous in science, engineering, and
economics.

I Optimization problems come in many different flavors.

I Linear,

I Convex,

I Nonlinear,

I Discrete optimization problems



Scaling up Generic Optimization

I Optimization is ubiquitous in science, engineering, and
economics.

I Optimization problems come in many different flavors.

I Linear,

I Convex,

I Nonlinear,

I Discrete optimization problems



Scaling up Generic Optimization

We focus on large-scale convex optimization problems.

I Cover many important problems.

I Many discrete optimization problems can be relaxed to
convex problems, e.g., max-cut, min-cut

I Use examples from big data analytics (machine learning
for big data) as running examples.



Machine Learning Techniques

I Classification

I Regression

I Clustering

I Low-dimensional embeddings



Machine Learning

About 500-750 papers published at NIPS and ICML per year.



Motivation

Look at machine learning through the lens of optimization.

I Least squares regression

I SVMs

I Kernel learning

I k-means

I . . .



Motivation

Look at machine learning through the lens of optimization.

I Least squares regression

I SVMs

I Kernel learning

I k-means

I . . .



Convex Optimization

LP ⊆ QP ⊆ SDP ⊆ convex Opt. ⊆ non-linear Opt.

lin. SVM kernel logistic k-means

sep. learning regression
...

...
...

...
...

A number of solvers / implementations for each problem.



Convex Optimization

LP ⊆ QP ⊆ SDP ⊆ convex Opt. ⊆ non-linear Opt.

lin. SVM kernel logistic k-means

sep. learning regression
...

...
...

...
...

A number of solvers / implementations for each problem.



Work flow

model problem



Work flow

model problem implement solver



Work flow

model problem implement solver evaluate solution



Work flow

model problem implement solver evaluate solution



General Optimization in Machine Learning

Ideal world:

I One tool / algorithm for everything

I Easy to use

I As fast as hand-tuned specialized solvers



Non-Negative Least Squares Example

Problem:
minx ‖Ax − b‖2

s.t . x ≥ 0.

.

in CVX (modeling language in Matlab)

cvx_begin
variable x(n)
minimize(norm(A*x - b, 2))
subject to
x >= 0

cvx_end



Non-Negative Least Squares Example

Problem:
minx ‖Ax − b‖2

s.t . x ≥ 0.

.

in CVX (modeling language in Matlab)

cvx_begin
variable x(n)
minimize(norm(A*x - b, 2))
subject to
x >= 0

cvx_end



Modeling Language and General Solvers

How does it work work?

CVX converts problem into standard form.

General solver solves problem in standard form.

CVX converts solution back to original problem.



Modeling Language and General Solvers

How does it work work?

CVX converts problem into standard form.

General solver solves problem in standard form.

CVX converts solution back to original problem.



Modeling Language and General Solvers

How does it work work?

CVX converts problem into standard form.

General solver solves problem in standard form.

CVX converts solution back to original problem.



Modeling Language and General Solvers

How does it work work?

CVX converts problem into standard form.

General solver solves problem in standard form.

CVX converts solution back to original problem.



Modeling Language and General Solvers

Modeling Language: CVX

Developed at Stanford and Caltech (more than 10,000 software
downloads per year)

Solver SeDuMi:

Fastest general solver available (non-commercial)

Solver Gurobi:

Fastest general solver available (commercial)



Modeling Language and General Solvers

Modeling Language: CVX

Developed at Stanford and Caltech (more than 10,000 software
downloads per year)

Solver SeDuMi:

Fastest general solver available (non-commercial)

Solver Gurobi:

Fastest general solver available (commercial)



Modeling Language and General Solvers

Modeling Language: CVX

Developed at Stanford and Caltech (more than 10,000 software
downloads per year)

Solver SeDuMi:

Fastest general solver available (non-commercial)

Solver Gurobi:

Fastest general solver available (commercial)



Convex Optimization

LP ⊆ QP ⊆ SDP ⊆ convex Opt. ⊆ non-linear Opt.

lin. SVM kernel logistic k-means

sep. learning regression
...

...
...

...
...



Convex Optimization

LP ⊆ QP ⊆ SDP ⊆ convex Opt. ⊆ non-linear Opt.

lin. SVM kernel logistic k-means

sep. learning regression
...

...
...

...
...



Kernelized Dual SVM

Problem:
minα 1/2αT Kα−

∑
i αi

s.t . yTα = 0

0 ≤ α ≤ c.

.

in CVX

cvx_begin
variable a(n)
minimize(0.5*a’*K*a - sum(a))
subject to
y’ * a == 0
0 <= a <= c

cvx_end



Kernelized Dual SVM

Problem:
minα 1/2αT Kα−

∑
i αi

s.t . yTα = 0

0 ≤ α ≤ c.

.

in CVX

cvx_begin
variable a(n)
minimize(0.5*a’*K*a - sum(a))
subject to
y’ * a == 0
0 <= a <= c

cvx_end



Kernelized Dual SVM

LIBSVM CVX / SeDuMi CVX / Gurobi

Sec. Sec. Sec.

c data set a1a

1 0.28 376.6 57.8

4 0.30 392.1 44.6

c data set a7a

1 39.5 n/a n/a

4 48.9 n/a n/a

LIBSVM – Chang and Lin 2001
Cited more than 18,000 times.



GENO

Our approach



GENO

matrix A

vector b

minimize norm(A*x - b, 2)

subject to

x >= 0

GENO

non-negative
least squares

solver

matrix X sparse

vector y

scalar c

minimize

1/2 * w’*w + c * sum(xi)

subject to

y.*(X*w+vector(b)) >= 1-xi

xi >= 0

SVM solver



Kernelized Dual SVM

LIBSVM GENO CVX / SeDuMi CVX / Gurobi

Sec. Sec. Sec. Sec.

c data set a1a

1 0.28 0.28 376.6 57.8

4 0.30 0.33 392.1 44.6

c data set a7a

1 39.5 29.8 n/a n/a

4 48.9 45.5 n/a n/a

LIBSVM – Chang and Lin 2001



Logistic Regression

LIBLINEAR GENO CVX / SeDuMi CVX / Gurobi

Sec. Sec. Sec. Sec.

c data set a1a

1 0.01 0.02 254.3 n/a

4 0.01 0.03 244.6 n/a

c rcv1_test (677,399; 47,236)

1 44.1 36.3 n/a n/a

4 51.2 52.1 n/a n/a

LIBLINEAR – Lin et al. (JMLR 2008)



Lasso

glmnet naive glmnet cov. GENO CVX/SeDuMi

Sec. Sec. Sec. Sec.

λ data set m = 800,n = 400

0.2 0.08 0.16 0.29 28.8

0.8 0.03 0.10 0.25 27.4

λ data set m = 8000,n = 4000

0.2 10.55 146.87 23.42 n/a

0.8 7.07 144.23 27.50 n/a

glmnet – Friedman, Hastie, Tibshirani (JStatSoft 2010)



Sparse PCA (non-linear version)

GPower GENO

fValue Sec. fValue Sec.

λ data set colon-cancer

12.4 -72.3 0.0109 -73.6 0.0083

24.8 -36.7 0.0066 -36.2 0.0171

λ data set gisette_scale

0.1549 -34.5 1.98 -34.6 1.52

0.3098 -24.2 1.95 -24.5 2.27

GPower – Journée et al. (JMLR 2010)



Example – Demo



GENO

How does it work?

Tighter coupling of modeling language and solver.

Combine thorough theoretical analysis with careful engineering.



GENO

How does it work?

Tighter coupling of modeling language and solver.

Combine thorough theoretical analysis with careful engineering.



GENO

How does it work?

Tighter coupling of modeling language and solver.

Combine thorough theoretical analysis with careful engineering.



Discussion

gradient computation

example: f (x) = xT Ax

gradient: ∇f (x) = (AT + A)x

example:
f (w) = 1

2wT w + C · sum(log(1 + exp(−y . ∗ (Xw + b))))
gradient: ∇f (w) = ?

I Maple, Mathematica, Sage cannot do it



Discussion

gradient computation

example: f (x) = xT Ax
gradient: ∇f (x) = (AT + A)x

example:
f (w) = 1

2wT w + C · sum(log(1 + exp(−y . ∗ (Xw + b))))
gradient: ∇f (w) = ?

I Maple, Mathematica, Sage cannot do it



Discussion

gradient computation

example: f (x) = xT Ax
gradient: ∇f (x) = (AT + A)x

example:
f (w) = 1

2wT w + C · sum(log(1 + exp(−y . ∗ (Xw + b))))

gradient: ∇f (w) = ?

I Maple, Mathematica, Sage cannot do it



Discussion

gradient computation

example: f (x) = xT Ax
gradient: ∇f (x) = (AT + A)x

example:
f (w) = 1

2wT w + C · sum(log(1 + exp(−y . ∗ (Xw + b))))
gradient: ∇f (w) = ?

I Maple, Mathematica, Sage cannot do it



Discussion

gradient computation

example: f (x) = xT Ax
gradient: ∇f (x) = (AT + A)x

example:
f (w) = 1

2wT w + C · sum(log(1 + exp(−y . ∗ (Xw + b))))
gradient: ∇f (w) = ?

I Maple, Mathematica, Sage cannot do it



GENO

Results:

I One algorithm for everything a lot

I Easy to use

I Orders of magnitude faster than current general solvers

I As fast as hand-tuned specialized solvers

I Rapid prototyping and production quality code



GENO

Results:

I One algorithm for everything a lot

I Easy to use

I Orders of magnitude faster than current general solvers

I As fast as hand-tuned specialized solvers

I Rapid prototyping and production quality code



SPP 1736 – ”Algorithms for Big Data”

Scaling Up GENO for Big Data Analytics

1. Code for multi-core architectures

2. Code for GPGPUs

3. Code for MICs (Intel Xeon Phi)

4. Code for distributed solvers / cluster (on top of Spark)



SPP 1736 – ”Algorithms for Big Data”

Scaling Up GENO for Big Data Analytics

1. Code for multi-core architectures

2. Code for GPGPUs

3. Code for MICs (Intel Xeon Phi)

4. Code for distributed solvers / cluster (on top of Spark)



SPP 1736 – ”Algorithms for Big Data”

Scaling Up GENO for Big Data Analytics

1. Code for multi-core architectures

2. Code for GPGPUs

3. Code for MICs (Intel Xeon Phi)

4. Code for distributed solvers / cluster (on top of Spark)



SPP 1736 – ”Algorithms for Big Data”

Scaling Up GENO for Big Data Analytics

1. Code for multi-core architectures

2. Code for GPGPUs

3. Code for MICs (Intel Xeon Phi)

4. Code for distributed solvers / cluster (on top of Spark)



Scaling up GENO

Two approaches

1. Parallelize basic linear algebra

2. Divide big problem into smaller problems; solve using
ADMM



Very Preliminary Results
Parallelize linear algebra
Multi-core architecture (Intel Xeon 8-core)

1 2 3 4 5 6 7 8
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
Relative Speedup

cores


