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Scaling up Generic Optimization

We focus on large-scale convex optimization problems.

I Cover many important problems.

I Many discrete optimization problems can be relaxed to
convex problems, e.g., max-cut, min-cut

I Use examples from big data analytics (machine learning
for big data) as running examples.



Machine Learning Techniques

I Classification

I Regression

I Clustering

I Low-dimensional embeddings



Machine Learning

About 500-750 papers published at NIPS and ICML per year.
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Convex Optimization

LP ⊆ QP ⊆ SDP ⊆ convex Opt. ⊆ non-linear Opt.

lin. SVM kernel logistic k-means

sep. learning regression
...
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A number of solvers / implementations for each problem.
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General Optimization in Machine Learning

Ideal world:

I One tool / algorithm for everything

I Easy to use

I As fast as hand-tuned specialized solvers



Non-Negative Least Squares Example

Problem:
minx ‖Ax − b‖2

s.t . x ≥ 0.

.

in CVX (modeling language in Matlab)

cvx_begin
variable x(n)
minimize(norm(A*x - b, 2))
subject to
x >= 0

cvx_end
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How does it work work?

CVX converts problem into standard form.
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Modeling Language: CVX
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Kernelized Dual SVM

Problem:
minα 1/2αT Kα−

∑
i αi

s.t . yTα = 0

0 ≤ α ≤ c.

.

in CVX

cvx_begin
variable a(n)
minimize(0.5*a’*K*a - sum(a))
subject to
y’ * a == 0
0 <= a <= c

cvx_end
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Kernelized Dual SVM

LIBSVM CVX / SeDuMi CVX / Gurobi

Sec. Sec. Sec.

c data set a1a

1 0.28 376.6 57.8

4 0.30 392.1 44.6

c data set a7a

1 39.5 n/a n/a

4 48.9 n/a n/a

LIBSVM – Chang and Lin 2001
Cited more than 18,000 times.



GENO

Our approach



GENO

matrix A

vector b

minimize norm(A*x - b, 2)

subject to

x >= 0

GENO

non-negative
least squares

solver

matrix X sparse

vector y

scalar c

minimize

1/2 * w’*w + c * sum(xi)

subject to

y.*(X*w+vector(b)) >= 1-xi

xi >= 0

SVM solver



Kernelized Dual SVM

LIBSVM GENO CVX / SeDuMi CVX / Gurobi

Sec. Sec. Sec. Sec.

c data set a1a

1 0.28 0.28 376.6 57.8

4 0.30 0.33 392.1 44.6

c data set a7a

1 39.5 29.8 n/a n/a

4 48.9 45.5 n/a n/a

LIBSVM – Chang and Lin 2001



Logistic Regression

LIBLINEAR GENO CVX / SeDuMi CVX / Gurobi

Sec. Sec. Sec. Sec.

c data set a1a

1 0.01 0.02 254.3 n/a

4 0.01 0.03 244.6 n/a

c rcv1_test (677,399; 47,236)

1 44.1 36.3 n/a n/a

4 51.2 52.1 n/a n/a

LIBLINEAR – Lin et al. (JMLR 2008)



Lasso

glmnet naive glmnet cov. GENO CVX/SeDuMi

Sec. Sec. Sec. Sec.

λ data set m = 800,n = 400

0.2 0.08 0.16 0.29 28.8

0.8 0.03 0.10 0.25 27.4

λ data set m = 8000,n = 4000

0.2 10.55 146.87 23.42 n/a

0.8 7.07 144.23 27.50 n/a

glmnet – Friedman, Hastie, Tibshirani (JStatSoft 2010)



Sparse PCA (non-linear version)

GPower GENO

fValue Sec. fValue Sec.

λ data set colon-cancer

12.4 -72.3 0.0109 -73.6 0.0083

24.8 -36.7 0.0066 -36.2 0.0171

λ data set gisette_scale

0.1549 -34.5 1.98 -34.6 1.52

0.3098 -24.2 1.95 -24.5 2.27

GPower – Journée et al. (JMLR 2010)



Example – Demo
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Tighter coupling of modeling language and solver.

Combine thorough theoretical analysis with careful engineering.
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Discussion

gradient computation

example: f (x) = xT Ax

gradient: ∇f (x) = (AT + A)x

example:
f (w) = 1

2wT w + C · sum(log(1 + exp(−y . ∗ (Xw + b))))
gradient: ∇f (w) = ?

I Maple, Mathematica, Sage cannot do it
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Results:

I One algorithm for everything a lot

I Easy to use

I Orders of magnitude faster than current general solvers

I As fast as hand-tuned specialized solvers

I Rapid prototyping and production quality code
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Scaling up GENO

Two approaches

1. Parallelize basic linear algebra

2. Divide big problem into smaller problems; solve using
ADMM



Very Preliminary Results
Parallelize linear algebra
Multi-core architecture (Intel Xeon 8-core)

1 2 3 4 5 6 7 8
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
Relative Speedup

cores


