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Massive complex networks
are part of big data:

Social networks

Climate networks
Biological networks
...

Network analysis

What: Extract info from network structure and/or data stored within
Why: Analysts/scientists need information for decisions!
How: FINCA: Parallelism, approximation algorithms, heuristics
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Figure 5. MMC analysis of Drosophila melanogaster data. Panels (A)–(D) describe a systems genetic analysis of 414 Drosophila melanogaster
genes associated with a competitive fitness phenotype. (A) The reordered matrix of pairwise genetic correlations between transcriptional profiles, in
analogy to Figure 3F. The twenty clusters identified by MMC are numbered (Modules 1–20), color-coded (to the left and below), and emphasized with
borders. From the upper left (Module 1) to lower right (Module 20), modules are ordered by decreasing average connectivity, defined here as average
absolute pairwise correlation within the module. (B) Relevance network obtained from the 414 genes by enforcing an absolute correlation threshold
of rj jw0:7. The genes are numbered and color-coded as in (A) to indicate module membership. Only genes with at least one connection are shown.
(C) Bar chart of the genes in Module 9 reporting for each one its relative expression level across eleven tissues. Genes are shown on the x-axis, tissues
are shown on the y-axis, and relative expression is shown on the z-axis. Expression in the ovary has been highlighted in red, and the genes featured in
the next panel have been highlighted in blue. (D) Local alignment of five genes sharing the dsx motif in their 59 UTRs. Above the alignment, a logo is
shown to represent the profile of the 17 bp recognition sequence of doublesex.
doi:10.1371/journal.pgen.1000479.g005

Modulated Modularity Clustering

PLoS Genetics | www.plosgenetics.org 8 May 2009 | Volume 5 | Issue 5 | e1000479

Img. source: E. A. Stone, J. F. Ayroles

Make recent theoretical results usable in
practice:

Sparsification of dense graphs
Low-rank approximation of matrices
Approximate maximum network flow

Improve combinatorial “solvers”:
Clustering dense graphs derived from
correlation data
Graph drawing for massive complex networks
Network flow
Generation of massive dynamic complex
networks

Improve applications from bioinformatics:
Gene expression profiling
Molecular distance geometry
Image segmentation tasks in biology
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Clustering dense networks

Sparsen dense graphs based on different edge importance measures
Approximation/estimation of edge importance measures
Integration into multilevel clustering algorithm
Clustering dynamic/streaming networks

Drawing massive complex networks

Entropy-stress model for GD
Parallel implementation (ongoing work with C. Schulz and M. Nöllenburg)

Integration of clustering concepts and edge importance measures
Application to molecular distance geometry
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FIG. 1: (Color online) Poincaré disk model. In (a), L1,2,3 and P1,2,3 are examples of hyperbolic lines. Lines L1,2,3 intersect
to form triangle ABC. The sum of its angles a + b + c < ⇡. As opposed to Euclidean geometry, there are infinitely many
lines (examples are P1,2,3) that are parallel to line L1 and go through a point C that does not belong to L1. In (b), a
{7, 3}-tessellation of the hyperbolic plane by equilateral triangles, and the dual {3, 7}-tessellation by regular heptagons are
shown. All triangles and heptagons are of the same hyperbolic size but the size of their Euclidean representations exponentially
decreases as a function of the distance from the center, while their number exponentially increases. In (c), the exponentially
increasing number of men illustrates the exponential expansion of hyperbolic space. The Poincaré tool [1] is used to construct
a {7, 7}-tessellation of the hyperbolic plane, rendering a fragment of The Vitruvian Man by Leonardo da Vinci.

as usual—by a non-analyticity of the partition function.
This phase transition separates two regimes in the en-
semble, cold and hot. Complex networks belong to the
cold regime, while in the hot regime, the standard config-
uration model [18] and classical random graphs [19] turn
out to be two limiting cases with degenerate geometric
structures, Section IX. Sections VII and VIII analyze the
degree distribution and clustering as functions of temper-
ature in the two regimes.

Finally, in Section X, we shift our attention to network
function. Specifically, we analyze the network e�ciency
with respect to targeted communication or transport pro-
cesses without global topology knowledge, made possi-
ble by our geometric approach. We find that such pro-
cesses in networks with strong heterogeneity and cluster-
ing, guided by the underlying hyperbolic space, achieve
the best possible e�ciency according to all measures, and
that this e�ciency is remarkably robust with respect to
even catastrophic levels of network damage. This finding
demonstrates that complex networks have the optimal
structure, allowing for routing with minimal overhead
approaching its theoretical lower bounds, a notoriously
di�cult longstanding problem in routing theory, proven
unsolvable for general graphs [20].

II. HYPERBOLIC GEOMETRY

In this section we review the basic facts about hyper-
bolic geometry. More detailed accounts can be found
in [21–27].

There are only three types of isotropic spaces: Eu-

clidean (flat), spherical (positively curved), and hyper-
bolic (negatively curved). Hyperbolic spaces of constant
curvature are di�cult to envisage because they cannot be
isometrically embedded into any Euclidean space. The
reason is, informally, that the former are “larger” and
have more “space” than the latter.

Because of the fundamental di�culties in represent-
ing spaces of constant negative curvature as subsets of
Euclidean spaces, there are not one but many equivalent
models of hyperbolic spaces. Each model emphasizes dif-
ferent aspects of hyperbolic geometry, but no model si-
multaneously represents all of its properties. In special
relativity, for example, the hyperboloid model is com-
monly used, where the hyperbolic space is represented
by a hyperboloid. Its two di↵erent projections to disks
orthogonal to the main axis of the hyperboloid yield
the Klein and Poincaré unit disk models. In the lat-
ter model, the whole infinite hyperbolic plane H2, i.e.,
the two-dimensional hyperbolic space of constant curva-
ture �1, is represented by the interior of the Euclidean
disk of radius 1, see Fig. 1. The boundary of the disk,
i.e., the circle S1, is not a part of the hyperbolic plane,
but represents its infinitely remote points, called bound-
ary at infinity @H2. Any symmetry transformation on
H2 translates to a symmetry on @H2, and vice versa, a
cornerstone of the anti-de Sitter space/conformal field
theory correspondence [8–10], where quantum gravity on
an anti-de Sitter space is equivalent to a quantum field
theory without gravity on the conformal boundary of the
space. Hyperbolic geodesic lines in the Poincaré model,
i.e., shortest paths between two points at the boundary,
are disk diameters and arcs of Euclidean circles intersect-

Img. source: Krioukov et al.

Approximate network flow

Sparsification
Low-rank approximation
Combinatorial linear solvers
Possible application: Image segmentation

Massive dynamic complex networks

Hyperbolic geometry
Space-partitioning data structures
Dynamics
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NetworKit tool suite

Fast interactive network analysis (C++ with OpenMP, Python)
Focus on massive networks
Open source (MIT license)
Used by several national and international projects
Info, talk, docu, code: http://www.network-analysis.info

FINCA connections to other projects

Graph generator will be made available for all projects
Brandes/Wagner: Backbones / sparsification
Koch/Mutzel: Motifs / clustering, drawing
Zweig: Centrality, clustering, motifs

http://www.network-analysis.info
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