universitätbonn

Big Data Kernelization

Matthias Mnich

II【

Efficient Compression of Large Instances

Let x be an instance of a(n NP-)hard optimization problem.
Can we simplify x to its "hard kernel"?
$? ? ?$

Efficient Compression of Large Instances

Let x be an instance of a(n NP-)hard optimization problem.

Can we simplify x to its "hard kernel"?

Efficient Compression of Large Instances

Let x be an instance of a(n NP-)hard optimization problem.

Can we simplify x to its "hard kernel"?

Kernel

Efficient Compression of Large Instances

Let x be an instance of a(n NP-)hard optimization problem.
Can we simplify x to its "hard kernel"?

Kernel

Goal: Kernel as small as possible, ideally $\mathcal{O}\left(k^{c}\right)$ or $\mathcal{O}(k)$

- Vertex Cover: Kernel with $2 k$ vertices
- k-Path: Kernel with $\mathcal{O}\left(1\left[66^{k}\right)\right.$ vertices

Input-Output Efficient Algorithms

1/O = read/write B data items from RAM to disk running "time" of an algorithm: number of I/Os

Basic Operations

- scanning - $\operatorname{scan}(N)=\Theta(N \square B)$
- permuting - perm $(N)=\Theta(\min \square N \square$ sort $(N) \square)$
- sorting $-\operatorname{sort}(N)=\Theta\left((N \square B) \log _{M \square B}(N \square B)\right)$

Input-Output Efficient Kernelization

