.mdf

Big Data Kernelization

Matthias Mnich

June 11, 2014

Let x be an instance of a(n NP-)hard optimization problem.

Can we simplify x to its "hard kernel"?

Let x be an instance of a(n NP-)hard optimization problem.

Can we simplify x to its "hard kernel"?

Let x be an instance of a(n NP-)hard optimization problem.

Can we simplify *x* to its "hard kernel"?

Let x be an instance of a(n NP-)hard optimization problem.

Can we simplify x to its "hard kernel"?

Goal: Kernel as small as possible, ideally $\mathcal{O}(k^c)$ or $\mathcal{O}(k)$

- VERTEX COVER: Kernel with 2k vertices
- *k*-PATH: Kernel with $\mathcal{O}(1:66^k)$ vertices

Input-Output Efficient Algorithms

I/O = read/write B data items from RAM to disk running "time" of an algorithm: number of I/Os

Basic Operations

- scanning scan(N) = $\Theta(N=B)$
- permuting perm $(N) = \Theta(\min N; \operatorname{sort}(N)g)$
- sorting sort(N) = $\Theta((N=B) \log_{M=B}(N=B))$

 $scan(N) < sort(N) \ll N$

