
.mdf

Big Data Kernelization
Matthias Mnich

June 11, 2014



Efficient Compression of Large Instances

Let x be an instance of a(n NP-)hard optimization problem.

Can we simplify x to its “hard kernel”?

x

efficient

x′

︸ ︷︷ ︸
g(k)

Kernel

Goal: Kernel as small as possible, ideally O(k c) or O(k)

VERTEX COVER: Kernel with 2k vertices

k -PATH: Kernel with O(1:66k ) vertices

Matthias Mnich Big Data Kernelization 2



Efficient Compression of Large Instances

Let x be an instance of a(n NP-)hard optimization problem.

Can we simplify x to its “hard kernel”?

x

efficient

x′

︸ ︷︷ ︸
g(k)

Kernel

Goal: Kernel as small as possible, ideally O(k c) or O(k)

VERTEX COVER: Kernel with 2k vertices

k -PATH: Kernel with O(1:66k ) vertices

Matthias Mnich Big Data Kernelization 2



Efficient Compression of Large Instances

Let x be an instance of a(n NP-)hard optimization problem.

Can we simplify x to its “hard kernel”?

x

efficient

x′︸ ︷︷ ︸
g(k)

Kernel

Goal: Kernel as small as possible, ideally O(k c) or O(k)

VERTEX COVER: Kernel with 2k vertices

k -PATH: Kernel with O(1:66k ) vertices

Matthias Mnich Big Data Kernelization 2



Efficient Compression of Large Instances

Let x be an instance of a(n NP-)hard optimization problem.

Can we simplify x to its “hard kernel”?

x

efficient

x′︸ ︷︷ ︸
g(k)

Kernel

Goal: Kernel as small as possible, ideally O(k c) or O(k)

VERTEX COVER: Kernel with 2k vertices

k -PATH: Kernel with O(1:66k ) vertices

Matthias Mnich Big Data Kernelization 2



Input-Output Efficient Algorithms

B

CPU M

I/O

I/O = read/write B data items from RAM to disk
running “time” of an algorithm: number of I/Os

Basic Operations
scanning — scan(N) = Θ(N=B)

permuting — perm(N) = Θ(minfN; sort(N)g)
sorting — sort(N) = Θ((N=B) logM=B(N=B))

scan(N) < sort(N)� N

Matthias Mnich Big Data Kernelization 3



Input-Output Efficient Kernelization

x

O(sort(n))

x′︸ ︷︷ ︸
g(k)

Kernel

Matthias Mnich Big Data Kernelization 4


	Linear Kernels in Sparse Graphs
	Reduction via Protrusions
	(Topological) Minors
	Conclusions

